Engraftment of MDR1 and NeoR gene-transduced hematopoietic cells after breast cancer chemotherapy.
نویسندگان
چکیده
To determine whether the multidrug resistance gene MDR1 could act as a selectable marker in human subjects, we studied engraftment of peripheral blood progenitor cells (PBPCs) transduced with either MDR1 or the bacterial NeoR gene in six breast cancer patients. This study differed from previous MDR1 gene therapy studies in that patients received only PBPCs incubated in retroviral supernatants (no nonmanipulated PBPCs were infused), transduction of PBPCs was supported with autologous bone marrow stroma without additional cytokines, and a control gene (NeoR) was used for comparison with MDR1. Transduced PBPCs were infused after high-dose alkylating agent therapy and before chemotherapy with MDR-substrate drugs. We found that hematopoietic reconstitution can occur using only PBPCs incubated ex vivo, that the MDR1 gene product may play a role in engraftment, and that chemotherapy may selectively expand MDR1 gene-transduced hematopoietic cells relative to NeoR transduced cells in some patients.
منابع مشابه
Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients.
The MDR1 multidrug resistance gene confers resistance to natural-product anticancer drugs including paclitaxel. We conducted a clinical gene therapy study to determine whether retroviral-mediated transfer of MDR1 in human hematopoietic cells would result in stable engraftment, and possibly expansion, of cells containing this gene after treatment with myelosuppressive doses of paclitaxel. Patien...
متن کاملGene therapy for sarcoma.
Soft tissue sarcomas are mesenchymal tumors which respond poorly to systemic therapy. Recent studies suggest a higher response rate with an increased doxorubicin dosage. However, this was parallel with a profound hematotoxicity in 75% of patients. Transfer of the human multidrug resistance 1 (MDR1) gene to normal hematopoietic stem cells and transplantation may significantly reduce the hematoto...
متن کاملChemoprotection of murine hematopoietic cells by combined gene transfer of cytidine deaminase (CDD) and multidrug resistance 1 gene (MDR1)
BACKGROUND Hematologic toxicity represents a major side effect of cytotoxic chemotherapy frequently preventing adequately dosed chemotherapy application and impeding therapeutic success. Transgenic (over)expression of chemotherapy resistance (CTX-R) genes in hematopoietic stem- and progenitor cells represents a potential strategy to overcome this problem. To apply this concept in the context of...
متن کاملEfficient expression of functional human MDR1 gene in murine bone marrow after retroviral transduction of purified hematopoietic stem cells.
A procedure for efficient transfer of the human MDR1 (multi-drug resistance) gene into murine hematopoietic stem cells was developed. Cells expressing Sca-1 but no lineage-specific or major histocompatibility complex (MHC) class II antigens (Lin-MHC II-Sca-1+) were enriched from 5-fluorouracil-pretreated bone marrow by Ficoll density-gradient and immunomagnetic sorting. Purified cells were cocu...
متن کاملThe effect of multidrug-resistance 1 gene versus neo transduction on ex vivo and in vivo expansion of rhesus macaque hematopoietic repopulating cells.
Transduction of murine stem cells with a multidrug-resistance 1 gene (MDR1) retrovirus results in dramatic ex vivo and in vivo expansion of repopulating cells accompanied by a myeloproliferative disorder. Given the use of MDR1-containing vectors in human trials, investigations have been extended to nonhuman primates. Peripheral blood stem cells from 2 rhesus monkeys were collected, CD34-enriche...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 94 1 شماره
صفحات -
تاریخ انتشار 1999